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Abstract—When chaotic systems are used in different
practical applications, such as nonlinear control and
cryptography, their complex chaos dynamics are strongly
required. However, many existing chaotic systems have
simple complexity, and this brings negative effects to
chaos-based applications. To address this issue, this paper
introduces a sine chaotification model (SCM) as a general
framework to enhance the chaos complexity of existing
one-dimensional (1-D) chaotic maps. The SCM uses a sine
function as a nonlinear chaotification transform and applies
it to the output of a 1-D chaotic map. The resulting enhanced
chaotic map of the SCM has better chaos complexity and a
much larger chaotic range than the seed map. Theoretical
analysis verifies the efficiency of the SCM. To show the
performance of the SCM, we apply SCM to three existing
chaotic maps and analyze the dynamics properties of the
obtained enhanced chaotic maps. Performance evaluations
prove that the three enhanced chaotic maps have more
complicated dynamics behaviors than their seed chaotic
maps. To show the implementation simplicity of the SCM,
we implement the three enhanced chaotic maps using the
field-programmable gate array. To investigate the SCM in
practical application, we design pseudorandom number
generators using the enhanced chaotic maps.

Index Terms—Chaotic system, chaotification, chaos-
based application, cryptography, field-programmable gate
array (FPGA) implementation, nonlinear control.

I. INTRODUCTION

CHAOS theory is a subdiscipline of mathematics and it de-
scribes the behaviors of dynamical system that are highly

sensitive to initial states [1]. Chaotic behaviors exist in all kinds
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of natural and man-made scenarios, such as climate, road traffic,
and stock marketing [2]–[4]. The dynamical systems owning
chaotic behaviors are called chaotic systems. Even though a
chaotic system is deterministic, which means that its future
behavior is totally determined by its initial state, long-term
prediction of its behavior is impossible [5], [6]. Therefore, the
chaotic system has many specific properties, such as initial state
sensitivity, unpredictability, and topological mixing [7]–[9].
These meaningful properties make chaotic systems widely
studied [10]–[12] and have applications in many disciplines,
including meteorology, sociology, physics, computer science,
engineering, economics, and many others [13], [14]. Following
are several examples. As the initial state sensitivity and
ergodicity of chaos are similar to the diffusion and confusion
properties of cryptography [15], chaotic systems are widely
used in designing cryptographic algorithms [16], [17]. When
coupling several dissipative chaotic systems, these systems may
exhibit synchronization phenomenon and the synchronization
of chaos can be used in secure communication [18] and signal
detection [19], [20].

Since E. N. Lorenz first built the Lorenz chaotic system to
describe the change of weather [21], many chaotic systems
have been designed to describe different kinds of chaos phe-
nomena and these chaotic systems can be divided into two
categories: discrete-time chaotic system and continuous-time
chaotic system. Examples of discrete-time chaotic systems in-
clude the logistic map, complex quadratic map, and Hénon map,
while examples of continuous-time chaotic systems include the
Chua circuit [22], Lü chaotic attractor [23] and memristor-
based chaotic oscillating circuits [24], [25]. Except for these
well-defined chaotic systems, numerous chaotic models have
also been introduced to achieve better chaotic dynamics behav-
iors [26], [27]. These models can either obtain new dynamical
behaviors by perturbing the chaotic signals of existing chaotic
maps [28], [29] or generating new chaotic systems [30], [31].
For example, Wang et al. proposed a new method of designing
high-dimensional digitalized chaotic systems within the finite
precision domain in [31]. This method adopts the strategy that
uses random sequences to control the chaos generation.

When studying chaos theory and applying chaos theory to dif-
ferent disciplines, researchers found that many existing chaotic
systems have performance limitations in different aspects. First,
with the fast development of discerning chaos technologies,
the behaviors of many existing chaotic systems can be eval-
uated by identifying the initial states [32], [33] or estimating
the chaotic signals [34], [35]. Secondly, chaos degradation will
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happen when chaotic behaviors are simulated in the domain of
finite precision [36]. Theoretically, a chaotic behavior will never
close or repeat in the phase plane. However, as the finite preci-
sion domain cannot have infinite states, the close states in the
phase plane will appear precision truncation and overlap. This
makes the chaotic behaviors degrade to periodic behaviors and
thus causes negative effects to chaos-based applications [37].
A chaotic system has better performance to defense the chaos
degradation if it has better ergodicity. Besides, many existing
chaotic maps have frail chaos. Frail chaos means that the chaotic
system exhibits chaotic behaviors only in some isolated param-
eter regions. Slight perturbation to the parameter will make the
parameter fall into the nonchaotic regions, and thus will destroy
the chaos [38]. Thus, obtaining robust chaos with better chaos
performance can significantly promote the research of chaos
theory and the development of chaos-based applications [39].

Recently, several chaotic systems have been developed to
generate new chaotic maps [40]–[42]. These systems usually
generate new chaotic maps by applying nonlinear transforms to
existing chaotic maps, which are called seed maps. For example,
a parameter-control chaotic system was developed in [40]. It
can produce new one-dimensional (1-D) chaotic maps using
the outputs of a 1-D chaotic map to change the parameter(s)
of another 1-D chaotic map. However, these developed chaotic
systems have some limitations. First, these systems should use
two or more existing chaotic maps as seed maps. Secondly, the
nonlinear transforms of these systems are usually too complex.
Moreover, if one of the seed maps has frail chaos performance,
the obtained new chaotic maps may not result in good chaos
performance.

To enhance the chaos complexity of existing 1-D chaotic
maps and obtain robust chaos, this paper proposes a sine chao-
tification model (SCM). Applying a sine function as a nonlinear
chaotification transform to the outputs of a 1-D chaotic map,
the SCM not only can enhance the chaos complexity of the
original chaotic map in the chaotic range, but also can produce
chaos in the nonchaotic range. Different from the developed
chaotic systems that have complex nonlinear frameworks and
use two or more existing chaotic maps as seed maps, the SCM
is a simple but effective framework that is applied to one exist-
ing chaotic map. Theoretical and experimental analysis results
verify the efficiency and effectiveness of the SCM. The main
contributions and novelties of this paper are summarized as
follows.

1) We introduce SCM as a universal framework that is able
to enhance the chaos complexity of any 1-D chaotic map.

2) The efficiency of the SCM is theoretically analyzed using
the concept of Lyapunov exponent (LE).

3) To exhibit the efficiency of the SCM, we apply SCM to
three existing 1-D chaotic maps and discuss the chaos
dynamics of the obtained enhanced chaotic maps.

4) We experimentally test the chaos performance of these
enhanced chaotic maps using the LE, SE, and CD.

5) To demonstrate the simplicity of the SCM in hardware
environment, we design and test the circuits of the three
enhanced chaotic maps in field-programmable gate array
(FPGA) platform.

Fig. 1. Structure of the SCM.

6) Pseudorandom number generators (PRNGs) are designed
to show the practical application of the SCM.

The remainder of this paper is organized as follows.
Section II presents the proposed SCM and analyzes its chaos
complexity. Section III applies SCM to three existing chaotic
maps, and discusses the chaos dynamics of the three enhanced
chaotic maps. Section IV tests the chaos performance of these
enhanced chaotic maps. Section V implements the three en-
hanced chaotic maps using FPGA implementation. Section VI
develops PRNGs using the enhanced chaotic maps of the SCM.
Section VII concludes this paper.

II. SINE CHAOTIFICATION MODEL

This section introduces the proposed SCM and analyzes its
chaos complexity.

A. Concept of SCM

The proposed SCM is designed to enhance the chaos com-
plexity of existing 1-D chaotic maps. Using a sine function as
a nonlinear transform and applying it to the outputs of 1-D
chaotic maps, SCM can extremely enhance the chaos complex-
ity of these maps. Fig. 1 plots the structure of the SCM. One
can see that F (p, xi) is an existing chaotic map called the seed
map, p is a control parameter, and xi is the input. The output
of F (p, xi) is used as the input of the sine function to enhance
complexity, and also used as the input of the seed map for next
iteration.

We can use a mathematical equation to present SCM as

xi+1 = E(xi) = sin(πF (p, xi)) (1)

where p is a control parameter.
The sine function has complex nonlinear properties and

bounded orbits. It can significantly enhance chaos performance
of existing 1-D chaotic maps in a large parameter range. The
effectiveness of the sine function in enhancing chaos can be
theoretically verified using the principle of LE. Thus, this paper
uses the sine function as the chaotification model to enhance
chaos. The proposed SCM has the following properties.

1) It is a simple but effective chaotification model that is
applied to one existing 1-D chaotic map. Users are flexible
to use it to enhance any 1-D chaotic map.

2) The enhanced chaotic maps can overcome the weak-
nesses of many existing chaotic maps in periodic win-
dows and incomplete attractor distributions.

3) The SCM can enlarge the chaotic ranges of existing
1-D chaotic maps. Most existing 1-D chaotic maps have
chaotic behaviors only in a quite small parameter range.
However, their enhanced chaotic maps by SCM can own
chaotic behaviors in quite large parameter ranges.
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These properties will be theoretically analyzed in Section II-B
and be experimentally verified in Section IV.

B. Chaos Complexity Analysis

As chaotic behaviors are some observed phenomena, there
are no universal standards or mathematical definitions to judge
the existence of chaos. The LE [26], [43] is a theoretical de-
scription about the existence of chaos and it is one of the most
widely used criteria accepted by different researchers. The LE of
a difference equation xi+1 = f(xi), denoted as λf (x) , is math-
ematically defined as

λf (x) = lim
n→∞

{
1
n

ln
∣∣∣∣f

n (x0 + ε) − fn (x0)
ε

∣∣∣∣
}

(2)

where ε is a very small positive value closing to zero.
Essentially, the LE measures the average divergence of two

trajectories starting from two extremely close initial points as
the time increases to infinity. When λf (x) > 0, trajectories be-
ginning from close initial points exponentially separate in each
iteration and will eventually evolve to totally different trajec-
tories. Thus, the dynamical system f(x) can achieve chaotic
behavior if λf (x) > 0, and larger LE indicates better chaos
performance.

Here, we use LE to analyze the chaos complexity of the
SCM. Suppose there is a difference equation xi+1 = Ŝ(x) =
sin(πxi), the SCM defined in (1) can be regarded as a compound
function Ŝ(x) ◦ F (p, xi). Then, (1) can be rewritten as

xi+1 = E(xi) = Ŝ(F (p, xi)). (3)

To calculate LE of the SCM, we suppose x0 and y0 are two
initial values of (3) and y0 = x0 + ε, where ε is a small positive
value. After first iteration, the difference between x1 and y1 can
be calculated as

|x1 − y1 | = |E(x0) − E(y0)|

=
∣∣∣Ŝ(F (p, x0)) − Ŝ(F (p, y0))

∣∣∣

=

∣∣∣∣∣
Ŝ(F (p, x0)) − Ŝ(F (p, y0))

F (p, x0) − F (p, y0)

∣∣∣∣∣
∣∣∣∣F (p, x0) − F (p, y0)

x0 − y0

∣∣∣∣
|x0 − y0 | . (4)

Because y0 → x0 , F (p, y0) → F (p, x0). Then

F (p, x0) − F (p, y0)
x0 − y0

≈ dF

dx
|x0

Ŝ(F (p, x0)) − Ŝ(F (p, y0))
F (p, x0) − F (p, y0)

≈ dŜ

dx
|F (p,x0 ) .

Thus

|x1 − y1 | ≈
∣∣∣∣∣
dŜ

dx
|F (p,x0 )

∣∣∣∣∣
∣∣∣∣dF

dx
|x0

∣∣∣∣ |x0 − y0 | .

Similarity, after the second iteration, the difference between x2
and y2 can be calculated as

|x2 − y2 | = |E(x1) − E(y1)|

=
∣∣∣Ŝ(F (p, x1)) − Ŝ(F (p, y1))

∣∣∣

=

∣∣∣∣∣
Ŝ(F (p, x1)) − Ŝ(F (p, y1))

F (p, x1) − F (p, y1)

∣∣∣∣∣
∣∣∣∣F (p, x1) − F (p, y1)

x1 − y1

∣∣∣∣
|x1 − y1 |

≈
∣∣∣∣∣
dŜ

dx
|F (p,x1 )

∣∣∣∣∣
∣∣∣∣dF

dx
|x1

∣∣∣∣
∣∣∣∣∣
dŜ

dx
|F (p,x0 )

∣∣∣∣∣
∣∣∣∣dF

dx
|x0

∣∣∣∣ |x0 − y0 |.

(5)

After nth (n → ∞) iteration, the difference between xn and yn

can be calculated as

|xn − yn | = |E(xn−1) − E(yn−1)|

≈
n−1∏
i=0

∣∣∣∣∣
dŜ

dx
|F (p,xi )

dF

dx
|xi

∣∣∣∣∣ |x0 − y0 | . (6)

Then, the average divergence in the n iterations, denoted as
ΔE(x) , can be calculated as

ΔE(x) =
∣∣∣∣xn − yn

x0 − y0

∣∣∣∣
1/n

=

{
n−1∏
i=0

∣∣∣∣∣
dŜ

dx
|F (p,xi )

dF

dx
|xi

∣∣∣∣∣
}1/n

. (7)

The LE of E(x), denoted as λE(x) , is defined as the log of the
ΔE(x) , namely

λE(x) = ln(ΔE(x))

= ln

{
n−1∏
i=0

∣∣∣∣∣
dŜ

dx
|F (p,xi )

dF

dx
|xi

∣∣∣∣∣
}1/n

= lim
n→∞

1
n

n−1∑
i=0

ln

∣∣∣∣∣
dŜ

dx
|F (p,xi )

∣∣∣∣∣ + lim
n→∞

1
n

n−1∑
i=0

ln
∣∣∣∣dF

dx
|xi

∣∣∣∣ . (8)

Similarity, the LE of Ŝ(x), denoted as λŜ(x) , and the LE of
F (p, x), denoted as λF (p,x) , can be calculated as

λŜ(x) = lim
n→∞

1
n

n−1∑
i=0

ln

∣∣∣∣∣
dŜ

dx
|xi

∣∣∣∣∣

λF (p,x) = lim
n→∞

1
n

n−1∑
i=0

ln
∣∣∣∣dF

dx
|xi

∣∣∣∣ . (9)

Thus, the LE of E(x) in (8) is the combination of LEs of Ŝ(x)
and F (p, x), and

λE(x) = λŜ(x) + λF (p,x) . (10)

From definition of the sine map (see e.g., [40, eq. (1)]),
we can know that Ŝ(x) is exactly the sine map with control
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parameter μ = 1. According to the previous researches (see
e.g., [40, Fig. 1(a)]) that when parameter μ = 1, the sine map
is chaotic. If a dynamical system is chaotic, it can achieve a
positive LE. Thus, λŜ(x) > 0. Then, the chaotic behavior of the
SCM can be analyzed as follows.

1) When the seed chaotic map F (p, x) is chaotic, namely
λF (p,x) > 0, λE(x) = λŜ(x) + λF (p,x) > 0, and λE(x) >

λF (p,x) . In this case, the enhanced chaotic map by SCM
has chaotic behavior and can obtain larger LE than its
seed map.

2) When F (p, x) doesn’t have chaotic behavior and
λF (p,x) > −λŜ(x) , λE(x) = λŜ(x) + λF (p,x) > 0. Then,
the enhanced map by SCM can also obtain chaotic
behavior.

3) When F (p, x) doesn’t have chaotic behavior and
λF (p,x) ≤ −λŜ(x) , λE(x) = λŜ(x) + λF (p,x) ≤ 0. The
enhanced map doesn’t have chaotic behavior.

As a result, the enhanced chaotic map by SCM can always
obtain larger LE than its seed map. Even the seed chaotic map
doesn’t have chaotic behavior, the enhanced chaotic map may
also have chaotic behavior. This indicates that the proposed
SCM can enhance the chaos complexity of existing chaotic
maps in the chaotic ranges, and can also produce chaos in the
nonchaotic ranges. These properties will be experimentally ver-
ified in Section IV-A.

III. EXAMPLES OF ENHANCED CHAOTIC MAPS

To exhibit the effect of the SCM in enhancing the chaos
complexity of existing 1-D chaotic maps, as examples, we apply
SCM to the logistic map, sine map, and tent map, and analyze
the chaos dynamics of the three enhanced chaotic maps.

The logistic map is developed by biologist to calculate the
change of population and it is written as

xi+1 = L(xi) = axi(1 − xi) (11)

in which the control parameter a is within the range [0, 4].
The sine map is obtained from sine function and its mathe-

matical equation is written as

xi+1 = S(xi) = μ sin(πxi) (12)

in which the control parameter μ is within the range [0, 1].
The tent map is a polynomial mapping with degree one. It

either folds or stretches an input value according to the range of
the input value. The representative form of the tent map can be
defined as

xi+1 = T (xi) =
{

rxi for xi < 0.5
r(1 − xi) for xi ≥ 0.5

(13)

in which r is a control parameter and r ∈ [0, 2].

A. Enhanced Logistic Map

1) Definition: When applying SCM to the logistic map,
namely the seed map F (p, x) in (1) is set as the logistic map
in (11), we can obtain the enhanced logistic map and it is

Fig. 2. Number of fixed points with their minimum absolute derivatives.
(a) Enhanced logistic map. (b) Enhanced sine map. (c) Enhanced tent
map.

defined as

xi+1 = E(L(xi)) = sin(πãxi(1 − xi)) (14)

in which ã is a control parameter and ã ∈ (0,+∞).
2) Fixed Point and Stability: A fixed point of a function

is one element in the domain of the function which can map
to itself by the function. For example, q is a fixed point of the
function f(x) only when f(f(· · · f(q) · · · )) = fn (q) = q. For
a discrete-time chaotic system xi+1 = F (xi), its fixed points
are the solutions of the equation xi = F (xi). Thus, all the fixed
points x̂ of the enhanced logistic map can be calculated out
using the following equation:

x̂ = sin(πãx̂(1 − x̂)). (15)

It is obvious that x̂ = 0 is a fixed point of the enhanced logistic
map in the whole parameter settings. A dynamical system’s fixed
point can display the stable or unstable state. The stability of a
fixed point can be reflected by the gradient of the system at that
point. If the corresponding gradient is within the interval [−1, 1],
the fixed point shows stable state. Otherwise, it displays unstable
state. The gradient of a system’s point can be obtained using the
corresponding derivative. The derivative of the enhanced logistic
map is calculated by

J =
dxi+1

dxi

= cos(πãxi(1 − xi))πã(1 − 2xi). (16)

Table I lists all the fixed points and their corresponding
derivatives of the enhanced logistic map when its parameter
ã ∈ {1, 2}. When ã = 1, the enhanced logistic map has a fixed
point whose derivative is in the range [−1, 1], which indicates
that the system is stable. When ã = 2, all the derivatives of the
fixed points are without the interval [−1, 1], which means that
the system is unstable. When its parameter ã increases, the en-
hanced logistic map has more fixed points. Fig. 2(a) shows the
number of fixed points and their minimum absolute derivatives
of the enhanced logistic map when its parameter ã ∈ [1, 64].

When ã ≥ 2, all the minimum absolute derivatives are bigger
than one. This indicates that all these fixed points of the en-
hanced logistic map are unstable. When all the fixed points of a
dynamical system are unstable, the system is chaotic.

The bifurcation diagram plots the visited or asymptotically
approached values of a chaotic system. Fig. 3(a) displays
the bifurcation diagram of the enhanced logistic map when
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TABLE I
FIXED POINTS AND THEIR ASSOCIATED DERIVATIVES OF THE ENHANCED LOGISTIC, ENHANCED SINE, AND ENHANCED TENT MAPS

its parameter ã ∈ [1, 1000]. As can be observed that the en-
hanced logistic map has outputs within interval (−1, 1) and
these outputs fully distribute in the whole data range. On the
other hand, its associated seed map, the logistic map, has frail
chaos in only a small parameter range, which can be observed
from Fig. 3(b).

B. Enhanced Sine Map

1) Definition: When using SCM to enhance the sine map,
namely F (p, x) in (1) is set as the sine map in (12), we can get
the enhanced sine map defined as

xi+1 = sin(πμ̃ sin(πxi)) (17)

in which μ̃ is a control parameter and μ̃ ∈ (0,+∞).
2) Fixed Point and Stability: To obtain the fixed points x̂ of

the enhanced sine map, we set xi+1 = xi and can get the fixed
points of the enhanced sine map from the following equation:

x̂ = sin(πμ̃ sin(πx̂)). (18)

Solving the above equation, we can know that x̂ = 0 is a fixed
point of the enhanced sine map in the whole parameter range.
When the parameter μ̃ increases, the enhanced sine map has
more fixed points. The derivative of the enhanced sine map can
be calculated as

J =
dxi+1

dxi

= cos(πμ̃ sin(πxi))πμ̃ cos(πxi)π. (19)

Table I lists all the fixed points and their associated derivatives
of the enhanced sine map when its parameter μ̃ = {1, 2}, and
Fig. 2(b) plots the number of fixed points and their minimum
absolute derivatives when its parameter μ̃ ∈ [1, 64]. One can

see that with the parameter increases, the enhanced sine map
can obtain more fixed points and all the associated derivatives
are without the range [−1, 1], indicating that all its fixed points
are unstable.

Fig. 3(c) plots the bifurcation diagram of the enhanced sine
map when its parameter μ̃ ∈ [1, 1000] and Fig. 3(d) displays
the bifurcation diagram of the sine map when its parameter
μ ∈ [0, 1]. One can see that the outputs of the enhanced sine
map distribute randomly in the data range (−1, 1), indicating
that it can obtain complex dynamics behavior.

C. Enhanced Tent Map

1) Definition: When applying SCM in (1) to the tent map
in (13), we can obtain the enhanced tent map defined as

xi+1 =
{

sin(πr̃xi) if xi < 0.5
sin(πr̃(1 − xi)) if xi ≥ 0.5

(20)

in which r̃ is a parameter and r̃ ∈ (0,+∞).
2) Fixed Point and Stability: We can calculate the fixed

points of the enhanced tent map from the equation xi+1 = xi ,
namely

x̂ = sin(πr̃ min{x̂, 1 − x̂}). (21)

Obviously, x̂ = 0 is a fixed point of the enhanced tent map for
the parameter r̃ ∈ (0,+∞). When r̃ increases, the enhanced
tent map has more fixed points. The derivative of the enhanced
tent map can be calculated as

J =
dxi+1

dxi

=
{

cos(πr̃xi)πr̃ if xi < 0.5
− cos(πr̃(1 − xi))πr̃ if xi ≥ 0.5

. (22)
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Fig. 3. Bifurcation diagrams of the (a) enhanced logistic map, (b) logis-
tic map, (c) enhanced sine map, (d) sine map, (e) enhanced tent map,
and (f) tent map.

Table I lists all the fixed points and their associated deriva-
tives of the enhanced tent map when its parameter r̃ = {1, 2}.
When r̃ = 1, the enhanced tent map has three fixed points
x̂1 = −0.7365, x̂2 = 0 and x̂3 = 0.7365 and their derivatives
are all without interval [−1, 1], which means that they are un-
stable. Fig. 2(c) plots all the fixed points and their minimum
absolute derivatives of the enhanced tent map when its parame-
ter r̃ ∈ [1, 64]. One can observe that all the minimum absolute
derivatives are bigger than 1, indicating that all the fixed points
are unstable.

Fig. 3(e) plots the bifurcation diagram of the enhanced tent
map when its parameter r̃ ∈ [1, 1000] and Fig. 3(f) shows that
of the tent map with its parameter r ∈ [0, 2]. The result shows
that the enhanced tent map has much more complex chaotic
behavior.

D. Applying SCM to Higher Dimensional Chaotic Map

Besides 1-D chaotic map, the proposed SCM can be used to
enhance the chaos complexity of two-dimensional (2-D) or even
high-dimensional chaotic maps. In Section II-B, we have used

Fig. 4. Trajectories of (a) the enhanced Hénon map with initial point
(x0 , y0 ) = (0.3, 0.4) and control parameter (ã, b̃) = (912, 39), and (b) the
Hénon map with initial point (x0 , y0 ) = (0.3, 0.4) and control parameter
(a, b) = (1.4, 0.3).

the principle of LE to prove the efficiency of the SCM in 1-D
chaotic map. SCM to higher dimensional chaotic maps can also
be analyzed using the similar way.

To show the efficiency of the SCM to higher dimensional
chaotic maps, we apply SCM to the Hénon map as an example.
The Hénon map is a 2-D chaotic map and it is defined as

{
xi+1 = 1 − ax2

i + yi

yi+1 = bxi
(23)

where a and b are two control parameters. When a = 1.4 and
b = 0.3, the Hénon map has chaotic behaviors. When using
SCM to enhance the Hénon map, namely setting F (·) in (1)
as the Hénon map, the obtained enhanced Hénon map can be
obtained as {

xi+1 = sin(π(1 − ãx2
i + yi))

yi+1 = sin(πb̃xi)
(24)

where ã and b̃ are two control parameters and ã, b̃ ∈ R.
Fig. 4 plots the trajectories of the enhanced Hénon map and

the Hénon map. Both initial points are set as (0.3, 0.4). The con-
trol parameters of the enhanced Hénon map (ã, b̃) are randomly
generated, (912, 39) in our experiment, and the control parame-
ter of the Hénon map (ã, b̃) are set as (1.4, 0.3), which can make
the Hénon map has good chaotic behaviors. One can obverse that
the trajectory of the enhanced Hénon map can visit the whole
data range in its phase plane and its outputs distribute randomly.
On the other hand, the trajectory of the Hénon map can only
occupy a very small part in its phase plane. This indicates that
the enhanced Hénon map has significantly better complex be-
haviors than the original Hénon map. Thus, the proposed SCM
can efficiently enhance the chaos of the Hénon map.

IV. PERFORMANCE EVALUATIONS

To demonstrate the efficiency of the SCM, this section evalu-
ates the chaos performance of these 1-D enhanced chaotic maps
presented in Section III. To show the superiority of the SCM,
we compare these enhanced chaotic maps with their seed maps,
and new chaotic maps generated by other two methods, namely
sine-transform-based chaotic system (STBCS) [42] and chaotic
modulation framework (CMF) [30]. The evaluations and com-
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Fig. 5. LE comparisons of (a) the enhanced logistic and logistic maps,
(b) the enhanced sine and sine maps, and (c) the enhanced tent and
tent maps.

parisons are performed using Lyapunov exponent [43], sample
entropy (SE) [44], and correlation dimension (CD) [45].

A. Lyapunov Exponent

From the discussion in Section II-B, the LE can describe
the average separation rate of trajectories starting from two ex-
tremely close initial states. A positive LE means that a dynami-
cal system’s two adjacent trajectories exponentially separate in
each iteration and will become different trajectories when the
time increases to infinity. Therefore, a dynamical system own-
ing a positive LE is regarded as chaotic and larger LE indicates
more complex behavior. Fig. 5 compares the LEs of the en-
hanced chaotic maps and their associated seed maps. To obtain
a straightforward comparison effect, we only plot the LEs of the
three enhanced chaotic maps when their parameters are within
[1, 1000]. In fact, the three enhanced chaotic maps still have pos-
itive LEs when their control parameters increase to a quite large
positive number. As can be observed from Fig. 5 that the three
enhanced chaotic maps have much larger LEs than their seed
maps. With their parameters increase, the LEs of the three en-
hanced chaotic maps become larger. This proves that SCM can
significantly enhance the chaos complexity of existing chaotic
maps.

B. Sample Entropy

The SE is a modification of approximate entropy and it as-
sesses the regularity of time-series signal [44]. When using SE

Fig. 6. SE comparisons of different chaotic maps. (a) Enhanced lo-
gistic, enhanced sine and enhanced tent maps, and their seed maps.
(b) Enhanced logistic, enhanced sine maps, and the LS maps generated
by STBCS and CMF. (c) Enhanced logistic, enhanced tent maps, and the
LT maps generated by STBCS and CMF. (d) Enhanced tent, enhanced
sine maps, and the TS maps generated by STBCS and CMF.

to assess the complexity of the dynamical system, a larger SE
means that the output time-series of the system can achieve a
lower degree of regularity, and further indicates that the dynam-
ical system has higher complexity.

Fig. 6 plots the SEs of the chaotic maps generated by SCM,
STBCS, and CMF and their seed maps. To provide a visual-
ized comparison environment, we linearly scale the parameter
ranges of all the chaotic maps as (0, 1). Fig. 6(a) compares the
three enhanced chaotic maps by SCM with their seed maps.
Figs. 6(b)–(d) compare the SEs of the enhanced chaotic maps
by SCM with chaotic maps generated by STBCS and CMF. The
proposed SCM is applied to one seed map, while STBCS and
CMF need two seed maps to generate a new chaotic map. Then
in each comparison, we choose two existing chaotic maps as
seed maps. Thus two enhanced chaotic maps can be obtained by
SCM, and two new chaotic maps can be generated by STBCS
and CMF. From the SE comparisons, we can observe that using
the same seed maps, the enhanced chaotic maps obtained by
SCM have much larger SEs than the chaotic maps generated by
STBCS and CMF in almost all parameter settings. This demon-
strates that the enhanced chaotic maps by SCM can generate
output time-series with much lower degree of regularity than
the chaotic maps generated by the other two methods.

C. Correlation Dimension

The CD is a kind of fractal dimensions and it is designed to
test the occupied space dimensionality of a series of points [45].
It can test the strangeness of a chaotic system’s chaotic attractor.
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Fig. 7. CD comparisons of different chaotic maps. (a) Enhanced lo-
gistic, enhanced sine and enhanced tent maps, and their seed maps.
(b) Enhanced logistic, enhanced sine maps, and the LS maps generated
by STBCS and CMF. (c) Enhanced logistic, enhanced tent maps, and the
LT maps generated by STBCS and CMF. (d) Enhanced tent, enhanced
sine maps, and the TS maps generated by STBCS and CMF.

We use the calculation method introduced in [46] to obtain the
CDs of different chaotic maps and set the embedding dimension
as 2. Fig. 7 plots the CDs of different chaotic maps. Fig. 7(a)
compares the CDs of three enhanced chaotic maps with those of
their seed maps. It shows that these three enhanced chaotic maps
by SCM can achieve much larger positive CDs than their asso-
ciated seed maps. Figs. 7(b)–(d) compare the CDs of enhanced
chaotic maps generated by SCM with those of chaotic maps
generated by STBCS and CMF using the same seed maps. One
can observe that in most parameter settings, the three enhanced
chaotic maps can achieve larger CDs than these chaotic maps
generated by STBCS and CMF. This proves that the attractors
of the three enhanced chaotic maps are more irregular.

V. HARDWARE IMPLEMENTATION

To show the simple implementation of the proposed SCM,
this section designs and tests the circuits of the three enhanced
chaotic maps using FPGA.

A. FPGA Structure Setting

The FPGA is a widely used tool to implement the chaotic
oscillators. Fig. 8 shows the FPGA structure of the enhanced
logistic, enhanced sine and enhanced tent maps. We use the
64-bit double-float data format defined by IEEE 754 standard
and the programming language is the very high-speed hardware
description language (VHDL). One can see that the whole
structure includes four modules: TxCon, TopCon, FunCon,

and Sin_Pix modules. The TxCon module is a communication
control module, which obtains the initial states and parameter
settings from the connected computer and sends the iterative
results back to the computer. Specially, the variable RXD
receives the initial states, the parameter TXD receives the
information that specifies which of the three enhanced chaotic
maps is executed, and the parameter RST resets the module. The
TopCon module is the system control module. On one hand, it
parses the running parameters and sends these parameters to the
function module. On the other hand, it receives the executing
results from the function module and returns the results back to
the TxCon module, and also sends the results to oscilloscope.
The FunCon module is the function control module, which
includes the implementations of the three enhanced chaotic
maps using the received variables and sends the iterative results
back to the TopCon module. The Sin_Pix is to implement the
sine function sin(πx). It receives parameters from and returns
the calculation results back to the FunCon module.

B. Implementation Results

Fig. 9 shows the FPGA implementation environment. To
compare the hardware implementation results with the soft-
ware implementation results, we also implement the three
enhanced chaotic maps in the software environment using
the MATLAB software. The used data format in MAT-
LAB is also the 64-bit double-float format. Fig. 10 plots
the simulation results of the enhanced logistic, enhanced
sine and enhanced tent maps in both FPGA implementa-
tion (hardware environment) and MATLAB implementation
(software environment). In each implementation, we use the
same initial state and set (x0 , ã/μ̃/r̃) = (−0.842, 2) (namely
(BFEAF1A9FBE76C8B,4000000000000000) in FPGA imple-
mentation). Because the FPGA outputs are displayed in con-
tinuous form in the oscilloscope and the MATLAB outputs are
plotted in discrete form, the data curves in FPGA and MAT-
LAB simulations have some visual differences. Actually, the
implementation results of the three enhanced chaotic maps are
exactly the same in FPGA and MATLAB. This indicates that
their implementations own consistency in different platforms,
and thus, they are suitable for practical applications.

VI. APPLICATION OF SCM IN PRNG

As chaotic systems have many meaningful properties, such as
the initial state sensitivity, ergodicity and unpredictability, they
are widely used in designing PRNGs. When chaotic systems
are used in PRNGs, their chaos performance dominates the
randomness of the PRNGs.

A. Proposed PRNG

When designing chaos-based PRNGs, the chaotic sequences
are always directly used as pseudorandom numbers. Here, we
also use this strategy to design PRNG. For a chaotic sequence
{X(i)|i = 1, 2, · · · }, we convert each of its absolute values to a
52-bit binary stream using IEEE 754 float standard, and obtain
{XB (i)|i = 1, 2, · · · }. Then, the digital numbers from 33rd
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Fig. 8. FPGA structure of the enhanced logistic, enhanced sine and enhanced tent maps generated by SCM.

Fig. 9. Hardware devices of FPGA implementation.

to 40th in each binary stream are used as the pseudorandom
numbers. The proposed PRNG can be defined as

PRNG = XB (i)33:40 (25)

It is obvious that each chaotic output can obtain eight
binary numbers. The PRNGs using the enhanced logistic,
enhanced sine, enhanced tent, logistic, sine and tent maps are
called PRNG-ELM, PRNG-ESM, PRNG-ETM, PRNG-LM,
PRNG-SM, and PRNG-TM, respectively.

B. Randomness Analysis

Here, we test the randomness of the PRNGs using different
chaotic maps.

1) NIST SP800-22: The National Institute of Standards and
Technology SP800-22 [47] is a widely used test standard to
measure the randomness of random numbers. It includes 15
subtests and each subtest aims to find the nonrandomness area of
a random number sequence from different aspects. Each subtest

Fig. 10. Implementation results of the three enhanced chaotic maps.
The first, second, and third rows show the first 60 iteration outputs
of the enhanced logistic, enhanced sine and enhanced tent maps in
(a) FPGA and (b) MATLAB, respectively. Each initial state (x0 , ã/μ̃/r̃)
is set as (−0.842, 2) (namely (BFEAF1A9FBE76C8B,40000000000000
00) in FPGA implementation).

will generate a p-value and the random number sequences can
pass a sub-test if the corresponding p-value is bigger than the
experimental significance level α. The test binary sequence is
1 000 000 bits and the number of sequences should be larger
than α−1 in one test.
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TABLE II
p-VALUE SCORES OF BINARY SEQUENCES GENERATED BY PRNG-ELM,

PRNG-ESM, AND PRNG-ETM IN THE NIST SP800-22

According to the recommendation in [47], we set the sig-
nificance level α = 0.01 and use 120 binary sequences with
1 000 000 bits as the testing input. Then, the 120 binary se-
quences can pass a subtest if the obtained p-value is bigger
than 0.01. Table II shows the NIST SP800-22 test results of
PRNG-ELM, PRNG-ESM, and PRNG-ETM. For each PRNG,
we randomly generate 120 binary sequences with 1 000 000
bits as the experimental input. As can be observed that, all the
generated p-values fall into the range [0.01, 1]. This means that
the PRNGs using the three enhanced chaotic maps have high
randomness.

2) TestU01: It is also a commonly used test standard for
random numbers [48]. It provides a set of utilities for the em-
pirical statistical tests of random numbers. Our experiment uses
the two batteries, Rabbit and Alphabit to test the randomness of
different PRNGs. For each PRNG, two binary sequences with
224 bits and 228 bits are tested. The Rabbit includes 39 statistical
tests for binary sequence with 224 bit, and has 40 statistical tests
for binary sequence with 228 bit, while the Alphabit applies 17
statistical tests for binary sequence with various lengths.

Table III lists the TestU01 results of different PRNGs using
binary sequences with 224 and 228 bits. One can observe that
the PRNG-ELM, PRNG-ESM and PRNG-ETM can pass all the
statistical tests in the Rabbit and Alphabit, while the PRNG-
LM, PRNG-SM and PRNG-TM fall some tests. This indicates
that, using the same strategy, the random numbers generated by
the enhanced chaotic maps have better randomness. Thus, the
enhanced chaotic maps by SCM have better practicability in the
application of PRNG.

VII. CONCLUSION

This paper proposed an SCM to enhance the chaos complex-
ity of existing 1-D chaotic maps. SCM uses a sine function as

TABLE III
TESTU01 RESULTS OF DIFFERENT PRNGS USING DIFFERENT

LENGTHS OF RANDOM NUMBERS

a nonlinear chaotification transform and can be applied to any
existing 1-D chaotic map. We theoretically analyzed the chaos
complexity of the SCM using the concept of LE and the analysis
result shows that SCM can enhance the chaos complexity of
existing chaotic maps in chaotic parameter ranges, and can also
produce chaos in nonchaotic parameter ranges. To prove the ef-
fect of the SCM, we applied SCM to three 1-D chaotic maps and
discussed the chaos dynamics of the generated enhanced chaotic
maps. We tested the performance of these enhanced chaotic
maps using LE, SE, and CD. The test results show that the
enhanced chaotic maps can achieve much wider chaotic regions,
and more complex dynamics behaviors than their seed ones. To
demonstrate the implementation simplicity of the SCM using
hardware device, we implemented the three enhanced chaotic
maps using FPGA. PRNGs were further designed using differ-
ent chaotic maps to show the practical application of the SCM.
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[23] J. Lü and G. Chen, “A new chaotic attractor coined,” Int. J. Bifurcation
Chaos, vol. 12, no. 03, pp. 659–661, 2002.

[24] B.-C. Bao, H. Bao, N. Wang, M. Chen, and Q. Xu, “Hidden extreme mul-
tistability in memristive hyperchaotic system,” Chaos, Solitons Fractals,
vol. 94, pp. 102–111, 2017.

[25] B. Bao, T. Jiang, G. Wang, P. Jin, H. Bao, and M. Chen, “Two-memristor-
based Chuas hyperchaotic circuit with plane equilibrium and its ex-
treme multistability,” Nonlinear Dyn., vol. 89, no. 2, pp. 1157–1171,
2017.
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